

ACTRIS CCRES

Showcases of wind lidar, cloud radar, and ceilometer synergy

Authors:

Razvan Pirloaga¹, Mariana Adam¹, <u>Anca Nemuc¹</u>, Mirela Voiculescu²

¹ National Institute of Research and Development for Optoelectronics, INOE, Romania

² Faculty of Sciences and Environment, European Center of Excellence for the Environment, "Dunărea de Jos" University of Galați, Galați, Romania CCRES/CLU Workshop, Matera – November 7th, 2024

RADO Bucharest National Facility, Romania

RADO Bucharest National Facility, Romania

CCRES/CLU Workshop, Matera – November 7th, 2024

ACTRIS

CCRES

- Cloudnet Data Portal (<u>https://cloudnet.fmi.fi/</u>)
- ACTRIS stations:
 - RADO-Bucharest-Romania
 - RADO-Galati-Romania
 - Granada-Spain
 - Hyytiälä-Finland
- One-month analysis: 01.05.2023—31.05.2023
- Target classification products* using
 - DCR- Doppler Cloud Radar
 - ceilometer
 - microwave radiometer
- Wind data

CRFS

- DWL datasets-continuous vertical measurements+VAD scanning scenarios**
- Datasets are further used in an adapted processing algorithm based on Halo toolbox*** to obtain wind characteristics.

*Hogan and O'Connor, 2004"Facilitating cloud radar and lidar algorithms: the Cloudnet Instrument Synergy/Target Categorization product. "Cloudnet documentation" **Päschke et al., 2015 <u>https://doi.org/10.5194/amt-8-2251-2015</u> *** Manninen et al., 2018 <u>https://doi.org/10.1029/2017JD028169</u>

Hwytiala

Bucharest

Target classification classes

Class 0:	Clear sky (not shown in the analysis)	0		
Class 1:	Cloud liquid droplets only			
Class 2:	Drizzle or rain			
Class 3:	Drizzle or rain coexisting with cloud liquid droplets			
Class 4:	lce particles	No.		
Class 5:	lce coexisting with supercooled liquid droplets		();	

Ris

CCRES

No.

Class 6:	Melting ice particles				
Class 7:	Melting ice particles coexisting with cloud liquid droplets				
Class 8:	Aerosol particles, no cloud or precipitation		7	Z	
Class 9:	Insects, no cloud or precipitation	×	Z	7	
Class 10:	Aerosol coexisting with insects, no cloud or precipitation.		×	4	Ź

Target classification Contoured frequency by altitude diagrams (CFAD)

Alt

4

3

2

0-70

-60 -50 -40

-30

-10

-20

Reflectivity (dBZ)

CCRES/CLU Workshop, Matera – Novei

30

10 20

CFAD of Reflectivity at RADO-Galati from Doppler Cloud Radar

Results-Target classification

RADO-Bucharest and Galati stations

distinct pattern with classes 1, 4 and 5 reaching up to approximately 11 km altitude, class 8 reaching a maximum of approximately 5 km and all the rest of the classes (2, 3, 6, 7, 9 and 10) are predominant below 4 km altitude.

Granada & Hyytiälä stations

 Similar with RADO-Bucharest: 5 peaks of number of profiles: class 2 under 2 km altitude, class 4 in the 2,5-10 km altitude, class 8 under 3 km altitude, class 9 under 2,5 km altitude and class 10 with a maximum of 57000 profiles under 2 km altitude.

Hyytiälä station

- Less profiles involving insects
- All classes are present in the lower part of the atmosphere up to 3 km

*Ortiz Amezcua et al., 2022, <u>https://doi.org/10.3390/rs14102321</u> **Pîrloagă et al., 2023 Ground-Based Measurements of Wind and Turbulence at Bucharest–Măgurele: First Results. Remote Sens.**2023**,15, 1514. <u>https://doi.org/10.3390/rs15061514</u>

CCRES/CLU Workshop, Matera – November 7th, 2024

Hourly horizontal wind speeds m/s (upper panels) and wind direction (lower panels) from DWL at **Bucharest** Granada Hyytiälä station

CCRES/CLU Workshop, Matera – November 7th, 2024

Results

Hourly averaged horizontal wind speeds and horizontal wind directions from DWL

Granada station*

- a pattern with low speeds (<5 m/s) for all altitudes and all time-*different* May pattern than in previous studies
- a highly turbulent horizontal wind direction is presented

RADO-Bucharest station

- a typical spring wind pattern for this area** : high wind speeds as altitude increases reaching a maximum of approximately 13 m/s while
- horizontal wind direction- predominantly from East and Northeast.

Hyytiälä station

- a pattern with low speeds (approximately 5 m/s) in the lower part of the atmosphere all time intervals; higher speeds as altitudes increases (similar with RADO-Bucharest).
- horizontal wind direction-predominantly from the North.

*Ortiz Amezcua et al., 2022, <u>https://doi.org/10.3390/rs14102321</u> **Pîrloagă et al., 2023 Ground-Based Measurements of Wind and Turbulence at Bucharest–Măgurele: First Results. Remote Sens.**2023**,15, 1514. <u>https://doi.org/10.3390/rs15061514</u>

Plans

- We intend to perform this analysis on longer time periods, annually, seasonally or even on a multiyear period for several ACTRIS CCRES stations trying to find an unique "fingertip" for each station or to cluster stations with similarities
- If you are interested in collaborating, please contact us.

©TRiS`

CRES

Thank you for your attention Anca Nemuc anca@inoe.ro

